Evaluation of Ferric Chloride and Alum Efficiencies in Enhanced Coagulation for Toc Removal and Related Residual Metal Concentrations
نویسندگان
چکیده
Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM) to reduce the formation of disinfection by-products (DBPs), is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron) concentration in the treated water was assessed as well. The removal of total organic carbon (TOC) was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.
منابع مشابه
Nitrate removal from water using alum and ferric chloride: A comparative study of alum and ferric chloride efficiency
Background: Nitrate is an acute and well-known hazardous contaminant, and its contamination of water sources has been a growing concern worldwide in recent years. This study evaluated the feasibility of nitrate removal from water using the traditional coagulants alum and ferric chloride with lower concentrations than those used in the conventional coagulation process. Methods: In this research...
متن کاملEnhanced removal of heavy metals in primary treatment using coagulation and flocculation.
The goal of this study was to determine the removal efficiencies of chromium, copper, lead, nickel, and zinc from raw wastewater by chemically enhanced primary treatment (CEPT) and to attain a total suspended solids removal goal of 80%. Operating parameters and chemical doses were optimized by bench-scale tests. Locally obtained raw wastewater samples were spiked with heavy metal solutions to o...
متن کاملThe simultaneous removal of turbidity and humic substances from water using the enhanced coagulation process
This study aimed to investigate the efficiency of the enhanced coagulation (EC) process for the simultaneous removal of turbidity and humic substances (HS) from raw water from the Sanandaj Water Treatment Plant (SWTP). This study was conducted on a laboratory scale using a jar test device and ferric chloride (FeCL3) as the coagulant. Accordingly, the effects of pH and coagulant dosag...
متن کاملComparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric Chloride
Background: Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. ...
متن کاملThe application of Polyaluminium Ferric Chloride for Turbidity and Color Removal from Low to Medium Turbid Water
Background & Aims of the Study: Coagulation is an essential process for the removal of fine particulate matter in water treatment. Polyaluminium ferric chloride (PAFC) is a composite inorganic polymer of Aluminium and ferric salt. This study was conducted to find out the optimum coagulation conditions for the removal of turbidity, color and organic matter (UV absorbance) in low to mediu...
متن کامل